PRODUCT CATALOG

PROFESSIONAL DRONE TEST STANDS
FOR FASTER INNOVATION

MAKE TESTING **SAFE**MAKE PROGRESS **FAST**

THE CHALLENGE

Y

OF DRONE TESTING

Testing new drones, autopilots, or control systems has always been **risky expensive**, and **time consuming**. Traditional field testing often leads to **costly crashes**, and **Long development cycles**.

Without a reliable fail-safe system, every flight-test risks turning into a disaster.

Due to the **unstable** nature of drone dynamics, performing tests and calibrations before free-flight is absolutely necessary. This has led to several **rudimentary** drone testing techniques.

One of many is the **"rope" technique**, which has been used to test a drone's flight stability by tying it to a secure point, such as a ceiling or a frame.

The rope allows the drone to ascend and move within a **Limited space**, preventing it from drifting too far and reducing the **risk of damage**.

Although this method is useful during early-stage testing, propellers and ropes should never go together as this could lead to unpredictable **accidents**. This method also constrains the drone's full range of rotational dynamics, making it **unsuitable for advanced testing** and maneuvers.

On the other hand, there are various **advanced drone testing devices & systems** that attempt to address first-flight tests, such as motion tracking systems & fixed-base flight training platforms. Although they play their part in the development process, most of the time they exceed budget expectations, especially for educational institutions & small development teams.

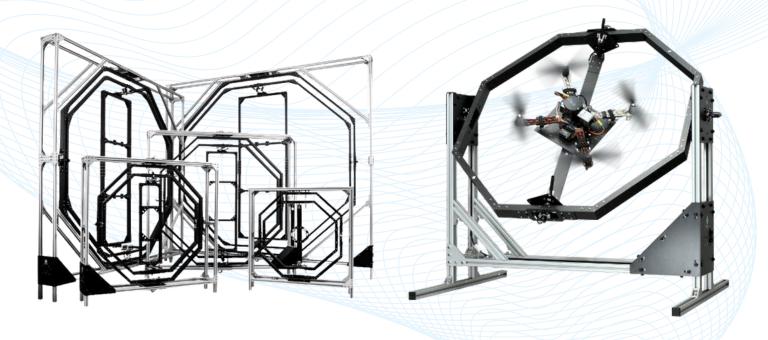
Most importantly, the biggest challenge is that if a drone causes property damage or injures people, the **legal** and **financial** consequences can far exceed the cost of the drone itself.

Even with state-of-the-art equipment, flight-tests are not fail-proof and mid-flight errors likely end in an incident where the drone crashes, is lost, or otherwise malfunctions.

That is why development programs need a **safer**, **faster**, & **cost-effective** way to validate their aerial systems. That is where **Javiat Aerospace** comes in.

THE SOLUTION

FOR DRONE TESTING


Javiat Aerospace in partner with Zerosum Technologies & Eureka Dynamics, we develop secure testing systems like the FFT GYRO - an innovative platform that allows drones to be tested safely in a fully controlled environment. Our platform enables near real-flight behavior without the risks of uncontrolled flights, helping teams validate autopilots, sensors, control algorithms, and hardware before moving to actual airborne tests.

The platform **simulates the rotational dynamics of flight**, enabling a first system validation, stabilization and maneuvering while keeping the drone securely tethered to the ground.

Our solutions are trusted by top universities, research centers, defense and drone companies around the world.

Institutions that prioritize **innovation**, **safety**, and **efficiency** in their drone programs rely on our systems to support their **research**, **testing** and **development** efforts.

THE RIGHT TOOL TO TEST WITH CONFIDENCE

FIRST-FLIGHT TESTER

GYROSCOPE

- The FFT GYRO is a specialized gyroscope that can move freely in the roll, pitch and yaw axis without any limitation, while supporting a drone in the center.
- Its safe structure allows the system to be installed in an open or closed space and interact with people in real time.
- With its adjustable height for different multi-rotors, the center of rotation of the drone can be aligned with the center of rotation of the gyroscope allowing the drone to rotate about it's true center of rotation.
- It can hold different types and sizes of multirotors, from small racing drones to big industrial drones.

- The FFT GYRO is essentially useful for everyone that works with drones or UAVs.
- From beginner users that want to Learn how to fly, to drone development companies that want to keep leading the market.
- It comes out as a solution for a wide variety
 of problems that are very common in this
 field.
- The FFT GYRO is not only a tool for research and development. It is the tool that makes easy to work with drones and helps to stay ahead of the game.

FIRST-FLIGHT TESTER

GYROSCOPE

The first utility of the **FFT GYRO** is safety, which reduces time and costs by avoiding accidents and damage of the equipment.

However, the relevance of the **FFT GYRO** lies in its accuracy to read and record angle movements.

It provides highly accurate measurements of Roll, Pitch, and Yaw angles when performing flight tests, essential data for flight control adjustments.

Overall, the **FFT GYRO** is a valuable tool that significantly contributes to the success of **advanced engineering projects**, particularly those focused on **innovation** leading to faster **development**.

ACADEMICS

Teach and train your students with real drones inside the classroom in a completely safe environment.

DEVELOPERS

Implement, test and validate your developments with real drones. Do not limit to just theory or simulations.

INTEGRATORS

Perform tests safely
with your new
accessories, devices or
specially-designed
software for your unique
aircraft projects.

TYPES OF TESTS TO PERFORM

Depending on how far along your project is, there are several tests you can perform to ensure everything is working correctly. Here are some key tests to consider:

Make sure all systems work properly together before flight tests: motors, propellers, navigation system, etc.

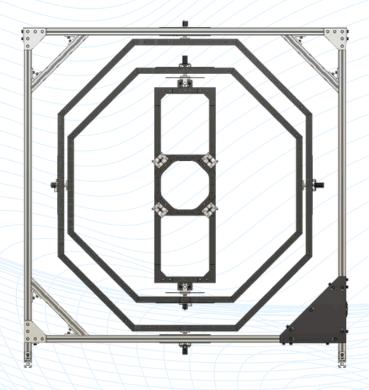
Test the drone's stabilization control. Set Roll and Pitch to o° and gradually increase the throttle until the drone stabilizes horizontally.

Check IMU (Roll, Pitch, and Yaw) accuracy by comparing with FFT GYRO's readings. Rotate the drone while attached to manually calibrate.

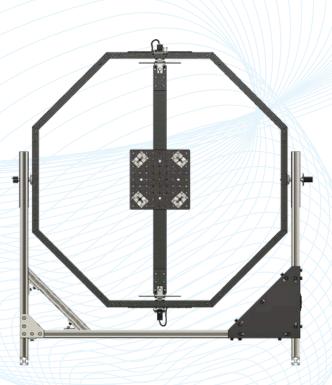
Test the Roll, Pitch, and Yaw commands by moving the remote control levers and checking if the drone responds as expected.

If everything is functioning well, you can adjust the PID parameters of the flight controller if needed, to ensure the drone operates smoothly and safely.

Test controller's robustness by adding weight on one side and see if the drone compensates. Simulate failures like lost signal, to check if emergency mode works.


FFT GYRO

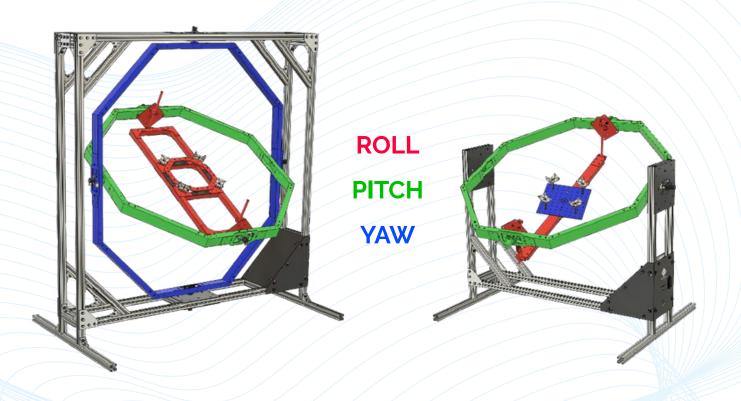
CONFIGURATIONS

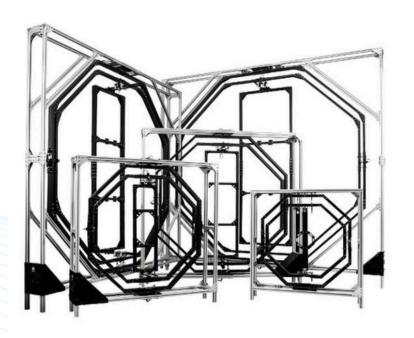

We're always working to improve our products based on user feedback. Some users pointed out that the yaw movement in the **FFT GYRO G3.5**, being the **weakest on a drone**, had too much inertia.

To address this, we released the **FFT GYRO G4.0** to reduce yaw inertia by changing the order of rotation to Yaw first, then Roll, and finally Pitch **(YRP)**.

The key difference between the G3.5 (RPY) and G4.0 (YRP) lies in the order of rotation, inertia, and connectivity.

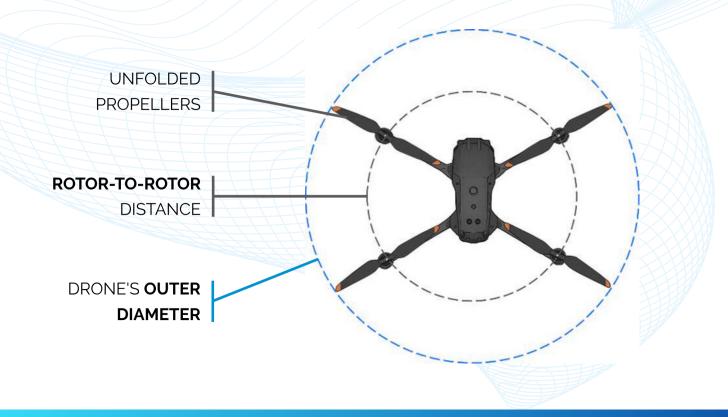
FFT GYRO 450 PRO CARBON G3.5

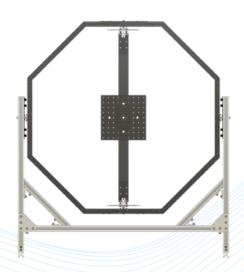

FFT GYRO 450 PRO CARBON G4.0


The gimbals follow the **AHRS convention**, allowing direct measurement of these angles.

A new **rotation order**, reducing yaw inertia for more responsive testing. This change improves maneuverability.

FEATURE / VERSION	G 3.5	G 4.0		
Angle Measurements	Follows the AHRS convention, takes direct measurements.	Does not follow AHRS, measurements are processed.		
Free-channels for custom connection	Yes	No		
Gimbal Inertia	Fixed and stable inertia	Reduced, but variable inertia		
Drone Maneuverability	Yaw gimbal adds considerable inertia, affecting drone maneuverability.	Better responsiveness for maneuver testing, achieving near-real flight performance.		
Drone Mount Type	Hollow in the center of the mount. Free space for batteries, landing gear, payload, etc.	Base plate, easily interchangeable for customizations. Not hollow.		


FFT GYRO SIZES


Available in a **wide range of sizes**, designed to
accommodate different
multi-rotor types based on
standard size-to-weight ratios.

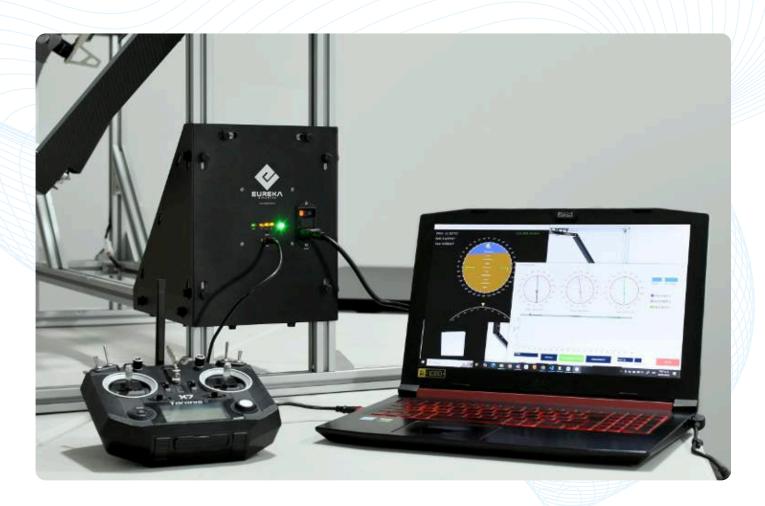
Sizes cover outer diameters (with unfolded propellers) from

0.45 m to 2.80 m.

SPEC/SIZE	250	450	600	800	1000	1200	1500	2000
Rotor-to-rotor	100 -	250 -	450 -	600 -	800 -	1000 -	1200 -	1500 -
distance (mm)	250	450	600	800	1000	1200	1500	2000
Outer diameter (mm)	up to	up to	up to					
	450	750	950	1200	1450	1750	2150	2750

FFT GYRO SPECS

STANDARD


This is the mechanical test stand. A gyroscope structure to mount UAVs with full 3 degrees of freedom, but has no electronics nor sensors.

PRO

This system is equipped with high-resolution magnetic **encoders**, to **measure** roll, pitch and yaw angles.

Reads and records angle movements from our open-source software interface, the **FFT GYRO Test Tool**. Sensing operations also available in MATLAB/Simulink models.

FFT GYRO ADD-ONS

Transform your gyroscope **from passive** (only reacts to the drone's motion) **to active**, with motors.

Aside from just reading angles, motors also **control position, velocity and torque** on each axis.

This is useful for **automatic calibration processes**, or to **input an external force** — typically used to see if the drone is capable of "fighting back".

Use cases vary by client, from research and development to exhibitions and product demos.

These motor kits are designed to **replace the 3 encoders with 3 smart servo-motors**, attaching them to a shaft of each gimbal (roll, pitch, and yaw).

The motor kits are compatible with the FFT GYRO test tool and MATLAB/SIMULINK models for **sensing and control operations**.

3 DC servo modules. Smart actuators with 360 degree of position control and high speed communication.

■ Stall Torque: 2.5 Nm

MOTOR KIT 6.0

3 DC servo modules. Smart actuators with 360 degree of position control and high speed communication.

Rated Torque: 1.2 Nm

■ Stall Torque: 6.0 Nm

SPEC/SIZE	250	450	600	800	1000	1200	1500	2000
Motor Kit compatibility	2.5, 6.0	2.5, 6.0	6.0	6.0	No	No	No	No

FFT GYRO MATERIALS

Each FFT GYRO size is built to support the **weight** and **thrust** of its typical corresponding drone size.

The use of **carbon fiber** ensures strength and **minimizes inertia**, helping drones achieve near-real angular performance without compromising robustness.

Also available in **aluminum**, not as light as carbon fiber, but an **affordable** option.

SPEC/SIZE	250	450	600	800	1000	1200	1500	2000
Max. weight Aluminum version (kg)	2.5	4	5	6	8	10	15	20
Max. weight Carbon Fiber version (kg)	3	5	6	8	10	15	20	40

01

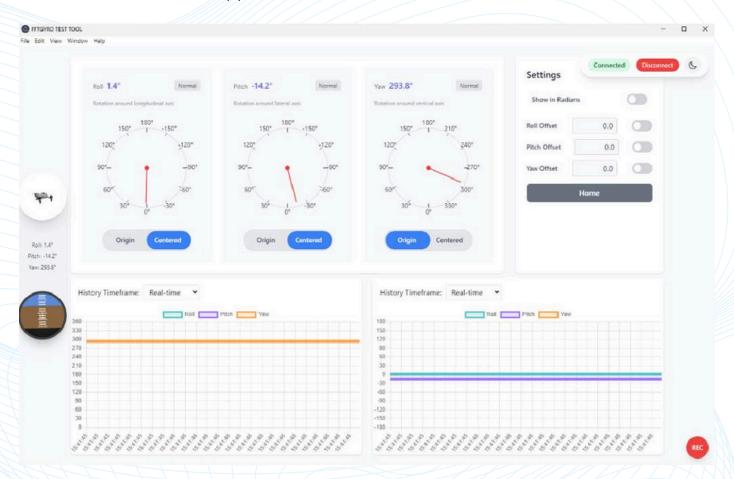
ALUMINUM

High-quality, **affordable**, and corrosion-resistant.
Strong and stable structure for flight tests. Its **low-ferromagnetic** properties avoid reaction to magnetic fields.

02

CARBON FIBER

High-performance. Strong, stiff, and **light**. Provides improved aerodynamics for professional UAVs, to minimize extra weight and added inertia.


Low-ferromagnetic.

PRO VERSION

FFT GYRO TEST TOOL

The **FFT GYRO Test Tool** is an open-source software interface developed by Eureka Dynamics to interact seamlessly with the FFT GYRO system. It enables users to **engage with the hardware immediately** and offers the flexibility to modify the source code for custom applications.

Key features of the FFT GYRO Test Tool include:

- Encoder Data Access: Users can access high-resolution magnetic encoder data to measure (or record) roll, pitch, and yaw angles of the attached drone, essential for precise motion analysis.
- Motor Control Capabilities: The software supports read and write commands for motor control, enabling the implementation of position, velocity, or torque control strategies for each axis of the FFT GYRO.

PRODUCT EXAMPLE FFT GYRO

Given the wide customization possibilities, we have arranged a nomenclature based on the characteristics:

01

SIZE: 450

Designed for medium size multi-rotors, based on the famous 450 quad-copter frame.

02

SPECS: PRO

High-resolution magnetic encoders. Sensing and control operation from FFT GYRO Test Tool and MATLAB/Simulink.

03

MATERIAL: CARBON FIBER

No material combines better the characteristics of being strong, stiff, and light.

04

CONFIGURATION: G3.5

Fixed inertia and custom connection cable, while allowing direct angle measurements.

05

ADD-ONS: MOTOR KIT 6.0

Smart DC servo modules for advanced applications.

FFT GYRO 450 PRO CARBON G3.5 + MK 6.0

OVERALL SUMMARY

The FFT GYRO is a very customizable tool. You can choose the features to meet your specific project requirements.

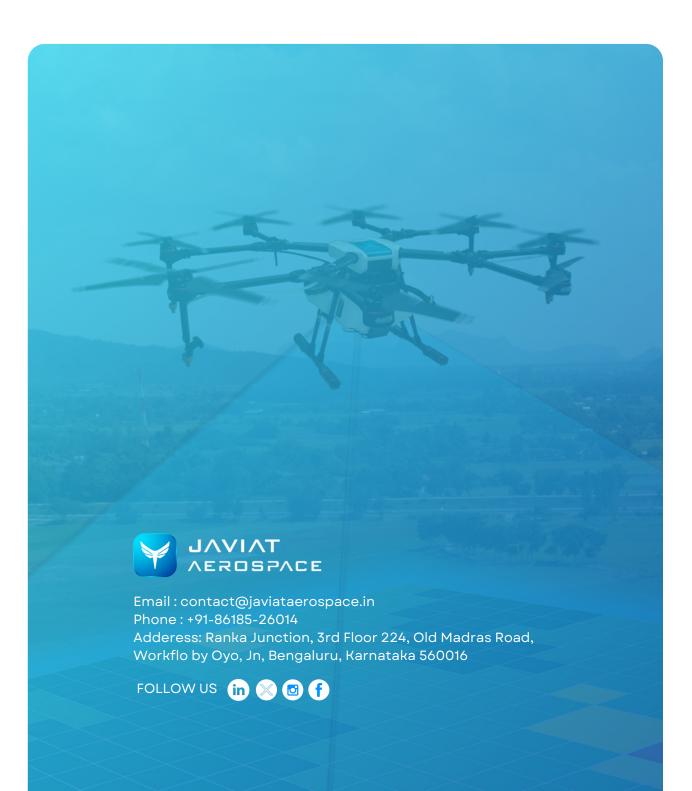
SPECS - SIZE	Drone rotor-to-rotor distance (mm)	Drone outer diameter (mm)	Max. weight Aluminum version (kg)	Max. weight Carbon Fiber version (kg)	Motor Kit compatibility
250	100 - 250	up to 450	2.5	3	2.5, 6.0
450	250 - 450	up to 750	4	5	2.5, 6.0
600	450 - 600	up to 950	5	6	6.0
800	600 - 800	up to 1200	6	8	6.0
1000	800 - 1000	up to 1450	8	10	No
1200	1000 - 1200	up to 1750	10	15	No
1500	1200 - 1500	up to 2150	15	20	No
2000	1500 - 2000	up to 2750	20	40	No

We are happy to provide online demos, answer any questions you may have or even schedule a deeper technical conversation to design a customized solution. Feel free to reach out. We are excited to collaborate with you.

At Javiat Aerospace we are passionate about advancing drone innovation. When you partner with us, you are not just acquiring equipment, you are gaining a committed ally that will help your team work smarter, safer and faster.

OUR CLIENTS

OUR INDUSTRIAL PARTNERS



www.javiataerospace.in

Copyright Notice and Content Accuracy: All content within this brochure, including text, images, and design, is the intellectual property of Javiat Aerospace Private Limited and is protected under copyright laws. Any unauthorized reproduction, distribution, or use of this material is strictly prohibited. While we have taken great care to ensure the accuracy of the information provided, Javiat Aerospace Private Limited disclaims any responsibility for errors or omissions. Specifications, features, and availability of products are subject to change without prior notice. For the most current and detailed information, please refer to our official documentation or contact us directly.